
 

  

 

Horizon 2020  
European Union Funding  
for Research & Innovation 

 

 

 

 
 
 
 
 
 

 
 

D6.2  
Use case Implementation analysis 

 

 

 

 

 

 

 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 1 

 

 

PROJECT BBTWINS 

PROJECT NUMBER 101023334 

PROJECT TITLE Digital twins for the optimisation of agrifood value chain processes and 
the supply of quality biomass for bio-processing 

PROGRAM H2020-BBI-JTI-2020 

START DATE 1 JUN 2021 

DURATION 48 months 

DELIVERABLE NUMBER D6.2 

DELIVERABLE TITLE Use case Implementation analysis 

SCHEDULE DATE & MONTH 31 May 2025 

ACTUAL SUB. DATE & MONTH 28 May 2025 

LEAD BENEFICARY NAME Cluster of Bioeconomy and Environment (CluBE) 

TYPE OF DELIVERABLE Report 

DISSEMINATION LEVEL Public 

 

LEAD BENEFICIARY NAME Cluster of Bioeconomy and Environment (CluBE) 

Address ZEP Area, Kozani, 50 100, Greece 

Phone number +302461056625 

E-mail address info@clube.gr 

Project website www.bbtwins.eu  

 

 

 

This project has received funding from the Bio-based Industries Joint Undertaking under the European Union’s 

Horizon 2020 Research and Innovation Programme under grant agreement No 101023334. 

 

http://www.bbtwins.eu/


BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 2 

 

 

Table of Contents 

1. Introduction .............................................................................................................................................................. 5 

1.1. Executive Summary ........................................................................................................................................... 5 

1.1.2.  KEY SERVICES AND CONTRIBUTIONS ............................................................................................................ 7 

1.2. Purpose and Scope ............................................................................................................................................ 7 

1.3. Methodology ..................................................................................................................................................... 8 

1.4. Structure of this document ................................................................................................................................ 8 

1.5. Relationships with other deliverables .............................................................................................................. 8 

2. Use Case Description ............................................................................................................................................... 9 

2.1. Brief Introduction of the use cases ................................................................................................................... 9 

2.1.1. PROCESS AND LOGISTICS OPTIMIZATION THROUGH DIGITIZATION AND ENABLING TECHNOLOGIES ...... 9 

2.1.2. TRACEABILITY AND TRANSPARENCY ASSISTED BY BLOCKCHAINS ............................................................ 10 

2.1.3. BIOMASS PROCESSING .............................................................................................................................. 10 

3. KPIs Definition ......................................................................................................................................................... 12 

3.1. FOOD PROCESS COMPANIES (FPC) AND DIGITAL TWINS_KPIs MEASUREMENT .......................................... 12 

3.2. The Hierarchical model .................................................................................................................................... 13 

4. Validation Process .................................................................................................................................................. 15 

4.1. Validation of PROCESS AND LOGISTICS OPTIMIZATION .................................................................................. 15 

4.2. Validation of TRACEABILITY AND TRANSPARENCY ASSISTED BY BLOCKCHAINS ............................................. 20 

4.3. Validation of BIOMASS PROCESSING ............................................................................................................... 22 

5. Measurement for Operational success ................................................................................................................. 25 

6. Result Analysis ........................................................................................................................................................ 27 

7. Optimization ........................................................................................................................................................... 29 

8. Conclusions ............................................................................................................................................................. 32 

Annex .......................................................................................................................................................................... 33 

References .................................................................................................................................................................. 39 

 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 3 

 

 

List of figures 

Figure 1: KPI categorization ........................................................................................................................................ 13 

Figure 2: KPIs examples .............................................................................................................................................. 14 

Figure 3: DIMITRA Digital Twin ................................................................................................................................... 16 

Figure 4: Digital Twin of the Fattening farm ............................................................................................................... 18 

Figure 5: Digital twin of the Feed Mill ........................................................................................................................ 18 

Figure 6: Digital Twin of the Facilites of CARTESA ...................................................................................................... 19 

Figure 7: Workflows of the different products ........................................................................................................... 21 

Figure 8: Detailed workflow of a product with the contained data ........................................................................... 21 

Figure 9: Digital Twin of the Biogas Plan .................................................................................................................... 22 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 4 

 

 

List of tables 

Table 1: Comparison of values produced by the DT with real data of DIMITRA. ....................................................... 16 

Table 2: Comparison of values produced by the DT with real data of PORTESA, CARTESA and Aire Sano................ 20 

Table 3: List of KPIs for operational success measurement ....................................................................................... 26 

 

 

 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 5 

 

 

1. Introduction 

1.1. Executive Summary 

The BBTWINS project, funded under the Horizon 2020 Bio-based Industries Joint Undertaking (BBI JU), is an 

ambitious initiative aimed at transforming agri-food value chains through the deployment of advanced digital 

technologies. By integrating Digital Twins (DTs), blockchain-based traceability systems, and biomass valorization 

models, the project demonstrates how digitalization can address key challenges in food production, supply chain 

efficiency, and circular bioeconomy practices. This deliverable, D6.2 – Use Case Implementation Analysis, presents 

the outcomes of real-world testing and validation of the BBTWINS tools across two distinct agri-food processes and 

value chains targeted by the project: fresh fruit production, represented by the DIMITRA cooperative in Greece, 

and pork production, represented by the integrated operations of PORTESA, CARTESA, and AIRE SANO in Spain. The 

central goal of the BBTWINS project is to design, implement, and validate a modular platform that supports 

decision-making, resource optimization, and waste reduction across agri-food chains. To achieve this, the project 

developed two comprehensive DT frameworks simulating the end-to-end operations of fruit and meat production 

systems. These DTs capture everything from energy consumption and worker flows to product throughput and 

waste streams. In parallel, a blockchain-enabled traceability platform was introduced to reinforce supply chain 

transparency. Simulation models were developed to explore the feasibility of converting production residues into 

valuable bio-based products or renewable energy. 

The DIMITRA cooperative comprises 170 producers of fresh fruits such as peaches, nectarines, cherries, apples, and 

apricots. The DT designed for DIMITRA replicates its internal operations, from sorting and packaging to the storage 

and dispatch of goods. The validation process focused on seven quantifiable parameters—total energy produced, 

total energy consumed, assembled pallets, filled wooden boxes, box stickers, fruit stickers, and waste generation. 

These parameters were selected due to their traceability capacity through official records, which allowed for a 

reliable comparison between real-world data and simulated outcomes. The DT demonstrated remarkable precision, 

with the majority of deviations well below the 20% error margin defined as acceptable within the project. For 

instance, the total energy production error was only 1.3%, and waste output deviated by just 1.1%. Moderate 

overestimations were found in consumables such as wooden boxes and fruit stickers, ranging between 10–15%, 

and the only parameter exceeding the margin was total energy consumption, which showed a 21.2% deviation. 

However, this discrepancy was justified by the limited data set used in the simulation, which accounted for only 

four fruit types out of the many produced by DIMITRA, resulting in reasonable generalizations about the remaining 

operations. 

In contrast, the pork value chain led by PORTESA, in conjunction with its affiliated companies CARTESA and AIRE 

SANO, required a multi-tiered simulation approach due to the scale and complexity of its vertically integrated 

system. Separate DTs were developed for the fattening farm, feed mill, processing plant, and biomass systems. 

Each DT simulated specific operational elements, from feed logistics and slaughterhouse energy consumption to 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 6 

 

 

production output and distribution. Validation was primarily conducted at the CARTESA processing level, where 

real data on gas consumption, animal throughput, and total product weights were compared to DT projections. 

Again, the results supported the reliability of the model, with burner gas consumption deviating by just 0.17% and 

boiler gas use by 6.2%. The estimated number of pigs processed showed a 13.9% error, and total product weight 

had a 15.7% deviation—both within acceptable limits.  

The only parameter exceeding the threshold was the quantity of distributed meat products, with a deviation of 

22.4%, which was attributed to unpredictable variables in post-processing logistics not yet fully incorporated into 

the DT. These results underline the potential of DTs as reliable forecasting and planning tools in large-scale, multi-

facility agri-food enterprises. 

A major innovation introduced alongside the DTs was the blockchain-based traceability system, developed by 

Stelviotech. This platform was tested with both use cases and proved instrumental in enhancing supply chain 

transparency, data integrity, and user-controlled information sharing. For PORTESA and its affiliates, the system 

enabled full traceability from individual animals to the final meat product, offering unmatched granularity and 

reinforcing food safety protocols. Wholesale clients could access detailed shipment histories and quality 

information, while consumers could retrieve origin and production details by scanning QR codes. In the case of 

DIMITRA, the platform effectively tracked fruit movements from field to dispatch, although traceability was limited 

to the orchard level, rather than individual trees. This limitation reflects intrinsic sectoral characteristics rather than 

technological constraints, and it highlights the need for sector-specific customization when deploying such systems. 

Both companies acknowledged the value of the tool but emphasized the importance of investing in staff training 

and reducing the time burden associated with manual data entry during implementation. 

BBTWINS also explored how DTs can support the valorization of biomass generated along the agri-food value chain. 

For PORTESA, a simulation was developed for a future biogas plant converting pig waste into energy. While no 

physical facility exists yet, the DT was benchmarked against experimental data from research partner CVR, 

validating the feasibility of biogas production under realistic scenarios. DIMITRA’s biomass model explored the 

potential for extracting high-value compounds such as pectin and polyphenols from fruit residues. While practical 

implementation remains limited, the simulations offer guidance for future infrastructure planning and underline 

the economic potential of valorizing agri-food by-products in line with circular economy principles. 

A cornerstone of the BBTWINS validation methodology was the definition and application of Key Performance 

Indicators (KPIs). A hierarchical model was established to differentiate between direct measurements (e.g., 

production time, machine uptime), basic KPIs (e.g., availability, first-time quality), and comprehensive KPIs (e.g., 

overall equipment effectiveness). These indicators provided not only a validation mechanism for the DTs but also a 

framework for continuous performance monitoring and improvement. The selected KPIs were tailored to reflect 

the operational realities of both use cases and covered dimensions such as energy efficiency, production flow, 

traceability coverage, waste ratio, and worker efficiency. As such, the KPI framework became an integral 

component of the decision-support environment fostered by BBTWINS. The results presented in this deliverable 

underscore the robustness, accuracy, and adaptability of the digital tools developed under the BBTWINS project. 

The DTs demonstrated high fidelity to real-world data, confirming their potential to support forecasting, resource 

optimization, and scenario simulation. The traceability system introduced new levels of transparency and control, 
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particularly in the meat sector, while the biomass valorization models illustrated the potential for future circularity 

and sustainability interventions. 

At the same time, the analysis highlights that technological innovation alone is not sufficient. Full realization of the 

benefits offered by DTs and blockchain platforms requires complementary investments in human capacity, digital 

infrastructure, and change management strategies. Organizational readiness, user familiarity with digital systems, 

and long-term alignment with strategic goals are all critical enablers of digital transformation. Looking forward, the 

BBTWINS methodology offers a scalable and replicable blueprint for digital innovation in the bio-based economy. 

As the project progresses toward its final phase, attention should focus on upscaling successful models, refining 

platform usability, integrating advanced features such as predictive analytics, and supporting broader deployment 

across European agri-food value chains. Through continued collaboration among industry, technology developers, 

and research institutions, BBTWINS has laid a solid foundation for future-oriented, data-driven agrifood systems 

that are more transparent, resilient, and sustainable. 

1.1.1. KEY SERVICES AND CONTRIBUTIONS 

• DIMITRA 

o Providing useful information about the internal way of operation 

o Identifying strengths and weaknesses in their value chain 

o Identifying which fields of the value chain can be improved. 

• PORTESA 

o Providing useful information about the internal way of operation 

o Identifying strengths and weaknesses in their value chain 

o Identifying which fields of the value chain can be improved. 

• CluBE 

o Proposing actionable improvements in the value chain 

o Developing a methodology for the current evaluation of the situation  

o Developing KPIs to measure the improvement of the value chain 

 

1.2. Purpose and Scope 
Define and use the methods and tools by which the use cases are tracked. The use cases will be monitored and 

assessed in a way that is sufficiently open, concise, and clear as to how the agreed targets and indicators are 

measured and quantified. This should be done in a way that is transparent and objective. Moreover, a 

comprehensive monitoring data collection approach was developed by designing a unified framework for 

harmonized data collection, analysis, and storage. In addition to monitoring the use cases’ progress, contextual 

information had to be collected as well (i.e. developments that are not intentionally related to the policy 

intervention, although they may be influenced by it, such as economic growth, break-through technologies, new 

behavioral patterns etc.). 
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1.3. Methodology 
To produce this deliverable and the effective validation of the digital tools a structured methodology plan was 

developed. The steps required for understanding the tools needed a successful analysis for both DIMITRA and 

POERTESA are presented below : 

1. Literature review of KPIs on food value chains: Understanding the need for such measurement methods 

in the food industry both for validation and optimization purposes. 

2. Literature review of KPIs definition methodology: The theory which supports the development of KPIs 

specified for the food sector. 

3. Creating the hierarchy of KPIs on which the whole methodology will be based: Creating the KPIs based 

on which the whole validation and optimization will be performed. The KPIs will be developed based on 

the hierarchical model described in the literature reviews. 

4. Validation of the digital tools for PORTESA and DIMITRA: Testing of the digital tools developed for both 

companies and comparison with real data to complete the validation method. 

5. Optimization model: By utilizing the digital tools along with the input from DIMITRA minor adjustments 

were made to study the impact on the value chain. 

1.4. Structure of this document 

This document is structured to provide a comprehensive overview of the implementation, validation, and analysis 

of the digital tools developed within the BBTWINS project. It begins with an introduction outlining the project’s 

objectives, scope, and methodological approach. This is followed by a detailed description of the two primary use 

cases—DIMITRA and PORTESA—alongside the key technological components applied: Digital Twins, blockchain-

based traceability systems, and biomass valorization simulations. Subsequent sections present the definition of Key 

Performance Indicators (KPIs) and the hierarchical model used to assess performance. The validation process is 

then described in depth, comparing simulated outputs with real-world data to evaluate the accuracy and reliability 

of each tool. The document continues with an analysis of results, discussing key findings and implications, before 

concluding with a reflection on the overall impact, challenges, and future potential of the BBTWINS solutions. 

Supporting figures, tables, and annexes are included throughout to substantiate the findings and enhance clarity. 

1.5. Relationships with other deliverables  
D6.2 uses input from the work done in WP 1‐5. D6.2, monitors and validates the agri-food processes and value 

chains (use cases of Tasks 6.1 and 6.2) by implementing and quantifying specific targets and indicators. In close 

collaboration with Task 1.2, Task 1.3 and Task 3.1, D6.2 prepares the testing protocols/processes set up and 

configures the Digital Twins as specified by WP5, as well as the monitoring software/hardware tools and the day-

to-day work details for performing the use case testing scenarios on the use case testing sites (Spain and Greece). 

The technologies selected in Τask 2.4 which is correlated with D2.5 were used for production of this deliverable. 

More specifically, D2.5 defines what to simulate, and D6.2 shows how those simulations perform when digitally 

implemented and validated against real-world operations. 
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2. Use Case Description 

2.1. Brief Introduction of the use cases  
Portesa is a livestock company. Its main activity is pork livestock breeding for the meat (pork) value chain, at farms 

located in the province of Teruel. The farms and the production process conform to the highest standards, with an 

optimum level of animal welfare. For the optimal feeding of its livestock, Portesa operates a feed factory and 

engages in an integrated production process, managing the genetics and choosing the best cereals to feed their 

livestock (pigs), placing a high value on the traceability of every step, and maintaining precise food security controls. 

There are three important phases within Portesa’s manufacturing process. Piglet production up to 6 kilogram, 

weaning piglets from 6 to 18 kg, and fattening pigs from 18 to 125 kg. Additionally, Portesa provides Carnes de 

Teruel (Cartesa), the meat industry plant, with all of its production. Cartesa’s activities comprise slaughtering, 

cutting and producing different formats of fresh pork meat, as well as salted and cured products. Finally, Cartesa 

provides the shoulders and hams to a third company, Aire Sano. Portesa, along with Cartesa and Aire Sano, form 

part of an integrated production process, which also conforms to a traceability process that is a benchmark 

throughout Europe. Furthermore, Portesa, Cartesa and Aire Sano are strongly committed to research and 

innovation to utilize sustainability and residue recovery models to implement effective circular economy practices. 

Dimitra is a cooperative that focuses on the production, management, and distribution of fresh fruits, such as 

peaches, nectarines, apples, cherries, and apricots. The cooperative consists of 170 producers of fresh fruits. The 

producers own the fields on which they cultivate and harvest the produce. Sorting, packaging, and storage of fruits 

is being carried out in a modern co‐owned facility with controlled atmosphere cold stores, various mechanical 

equipment and advanced technology equipment on the sorting and packaging line. Dimitra also distributes 

approximately 50% of its fresh fruits, especially peaches and nectarines, in foreign markets. 

2.1.1. PROCESS AND LOGISTICS OPTIMIZATION THROUGH DIGITIZATION AND ENABLING 

TECHNOLOGIES 

This use case will analyze and simulate the animal food production and dispatch process (PORTESA) and the fruit 

ordering process, including production forecasting.  

In the case of the meat sector, the use case will evaluate the Animal Food Supply process, which is representative 

of the value chain from the feed mill to the farmers. Furthermore, to complete the process and logistics 

optimization, we have to make a digital counterpart of the meat value chain, which involves the activities carried 

out in the slaughtering house, the salting, and the curing facilities, so that the DT can be used to generate reliable 

production forecasts in terms of worker’s needs, production losses and demand coverage. This DT implementation 

will simulate the meat products ordering process and will cover the value chain from the farm to the slaughterhouse 

and finally, to end users. 
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In the case of fruit sector, The DT will have to simulate the fruit ordering process, which involves all the actors in 

the fruit value chain. The use case will then be validated in order to use the finding for production forecasting on 

crops and factory. The use case is designed to identify opportunities for improving the efficiency of the entire value 

chain, ensuring the biomass supply, and reducing waste that occurs due to quality defects, conflicting incentives, 

overproduction, or sub‐optimal scheduling of logistics and production. To accomplish this, the data produced by 

the simulations carried out through the DT, will be compared with data from real environment operations and 

contrasted with logistics and production plans produced by advanced optimization tools that consider the quality 

properties of the feedstock and operations through the entire value chain. 

2.1.2. TRACEABILITY AND TRANSPARENCY ASSISTED BY BLOCKCHAINS 

An integrated traceability system based on blockchain is among the primary incentives towards using enabling 

technologies for Portesa. Such a system will inform the consumer about the origin and traceability of Portesa’s 

products in all the stages of the production process and consequently increase and improve the food safety. This 

use case will test and validate the traceability system implemented in WP4 as is integrated and used by the DT, 

from the perspective of wholesale/retail clients, as well as from an individual consumer’s endpoint (Information 

exchange will based on blockchain technology provided by Stelviotech which will also provide security and 

robustness to the data involved). In this scenario a wholesale/retail customer will be able to request logistical data 

containing costs, dates, quality parameters etc. These data will be linked to order numbers, shipment numbers, 

etc., any parameter in general that is traceable in any stage of the value chain on a B2B level. On the other hand, a 

consumer will access information related to food quality, location, and production details, by scanning with a 

smartphone a certain area on the product’s package (most likely a qr‐code printed on the package). Both roles are 

defined and analyzed in D4.1. 

Blockchain traceability from the perspective of wholesale/retail clients, as well as from an individual consumer’s 

endpoint (Information exchange will be based on blockchain technology provided by Stelviotech which will also 

provide security and robustness to the data involved). In this scenario a wholesale/retail customer will be able to 

request logistical data containing costs, dates, quality parameters etc. These data will be linked to order numbers, 

shipment numbers, etc., any parameter in general that is traceable in any stage of the value chain on a B2B level. 

On the other hand, a consumer will access information related to food quality, location, and production details, by 

scanning with a smartphone a certain area on the product’s package (most likely a qr‐code printed on the package). 

Both roles are defined and analyzed in D4.1. 

2.1.3. BIOMASS PROCESSING 

The farms produce two broad categories of biomass residues: i) Pig carcasses, that are currently incinerated; ii) Pig 

fluid manure that is used as an organic fertilizer. In the slaughterhouse, residual biomass is destinated to produce 

protein flour and fat of animal origin to use in animal feed or biofuels. Furthermore, the sludge from the treatment 

plant is used as fertilized and blood as raw material for the amino acids of special fertilizers. In the dryer’s factories, 

residual biomass products are destinated to produce protein flour for animal feed mainly. Therefore, WP6 needs a 

use case that will drive the optimization of the feedstock value chain in terms of availability, quality, resource 

efficiency, and economic profit, as well as an opportunity to test other valorization alternatives. The use case will 

create the digital counterpart of biomass processing. Findings and data produced by the simulation will be used for 
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waste valorization analysis in order to create value from the different types of waste produced at Portesa’s facilities 

such as pork bones, fat, skin, or hair. Furthermore, the use case will also explore the potential and sustainability of 

a biogas plant, to cover part of the energy needs of Portesa’s facilities. Furthermore, the use case will also analyze 

the viability of mixed energy production solutions, by combining biogas alternative renewable sources such as 

photovoltaics. Those deemed as feasible in terms of cost and location will be included in the DT, to study what‐if 

scenarios of energy production by renewable energy sources. 

Dimitra residual biomass is currently treated as follows: i) during pruning, the biomass is left at the field, and it is 

used as green manuring; ii) during the sorting process, all fruits that are not selected for sale are transferred at non‐ 

competitive price to a juice production company. Although research has been developed on the analysis of the 

main elements of peaches and its possible uses in pharmaceutical or cosmetic companies, there are inadequate 

data to consider this approach as a viable waste management process. Nevertheless, the Cooperative (Dimitra), 

seeks for alternative uses of fruit waste, through the extraction of high‐added value compounds such as pectin, 

glycosylates, proteins and phenolic and polyphenolic compounds, suitable for functional foods and nutraceutical 

products. This DT of biomass processing within the Cooperative aims to investigate waste valorization options and 

the potential to create value from the different types of waste, such as seeds, fruit skin or hair from peaches. The 

biogas potential will also be considered although Dimitra produces plant (fruit) biomass which contributed 

approximately 25% of the raw materials used for biogas production. However, the possibility to use alternative 

renewable energy sources is more likely. Therefore, the use of photovoltaics is to be included in this use case. 
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3. KPIs Definition  

Key performance indicators (KPIs) are quantifiable measurements used to gauge a company’s overall long-term 

performance. KPIs specifically help determine a company’s strategic, financial, and operational achievements. KPIs 

vary between companies and between industries, depending on performance criteria. For example, a software 

company striving to attain the fastest growth in its industry may consider year-over-year (YOY) revenue growth as 

its chief performance indicator. Conversely, a retail chain might place more value on same-store sales as the best 

KPI metric for gauging growth. 

At the heart of KPIs lie data collection, storage, cleaning, and synthesizing. The information may be financial or non-

financial and may relate to any department across the company. The goal of KPIs is to communicate results 

succinctly to allow management to make more informed strategic decisions. 

3.1. Food process companies (fpc) and digital twins_kpis 
measurement 

The KPIs measures mainly depend on the availability and quality of data at the strategic level, whereas the 

effectiveness of the production process at the operational level. Although, both practices are essential for DT 

implementations and execution processes. In FPC, the ultimate purpose of the DT is to mimic the behavior of the 

operational and strategic optimizations with the incorporation of a man-machine system (Kang et al., 2016). We 

have provided a broader framework of KPIs in Figure 1. The term KPIs is frequently used to measure the system’s 

performance comprehensibly based on time, quality, and cost. Early KPIs systems are primarily considered for 

financial aspects, but the production standards such as VDMA 66412-1, ISO 22400-1, ISO 22400-2, and their 

subsets provide more than 100 KPIs to measure the relevant performance ((Chae, 2009)). However, (Soltanali et 

al., 2021) proposed FPC production performance indicators and specified numerous performance tools such as 

Kaizen, Kanban, Poka Yoke, Shojinka, and 5S ((Braglia et al., 2020)). Figure 1 presents various KPIs based on the 

findings of (Kang et al., 2016) and (Stricker et al., 2017). (Kang et al., 2016) referred to the report of ISO 22400–1 

and ISO 22400–2. They stated that production KPIs reflect the industry’s critical success factors in quantifiable and 

strategic measurements to ensure continuous improvement of production systems. Therefore, we have 

developed this paper to focus on the production KPIs and evaluate the traditional approach with the DT-based 

approach. 

 

 

 

https://www.investopedia.com/terms/y/year-over-year.asp
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3.2. The Hierarchical model 

In production systems, many raw measurement elements are monitored and collected, such as, machine’s busy 

time and production volume. Based on these elements, KPIs of interests to engineers and managers can be derived 

and evaluated, for instance, efficiency or quality. Thus, the directly monitored elements become the supporting 

metrics for KPIs. These KPIs mostly reveal a single aspect of system performance only, thus are categorized as basic 

KPIs. To represent the overall performance, more comprehensive KPIs, supported by several basic KPIs, can be 

obtained. For example, the overall equipment effectiveness (OEE) index, which is based on individual equipment’s 

(or a group of equipment’ overall) working and failure time allocation, provides information related to production 

efficiency and production loss. The throughput of a production line is dependent on all the machines, the buffers, 

their positions and interactions. Therefore, based on these attributes, the supporting role, single function, and 

comprehensive feature of these elements or indicators, we introduce a hierarchical structure to categorize KPIs and 

the supporting elements. Specifically, such a structure consists of three categorized levels: direct measurement or 

supporting elements, basic KPIs, and comprehensive KPIs, as shown in Figure 1. 

 

Figure 1: KPI categorization 

In addition, we group the parameters based on their functions or attributes in each level. In the supporting 

elements level, the measurements can be divided into time and quantity groups. Within time group, there will be 

time measurements related to production and maintenance, from the point of view of machines, production 

orders, and operating workers. In quantity group, measurements are related to quantities on both production and 

quality. For basic KPIs, the attributes are related to production, quality, and maintenance. These KPIs are 

calculated by the direct measurements.  
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They all contribute to the comprehensive KPIs. Note that, the relationships not only exist between different levels 

of KPIs and supporting elements, but also can link KPIs within the same level, which are shown as double arrows 

between quality, productivity, and maintenance. 

Such a hierarchical framework explicitly indicates the causal relationships between different levels of KPIs and 

supporting elements. Clearly, such a categorization is not unique. Other types of grouping structure can be 

developed based on specific goals. Below, the KPIs and supporting metrics illustrated in Figure 1 are described. 

Since supporting elements are needed to derive basic and comprehensive KPIs, these elements are presented 

first. 

 

The supporting elements are the data directly monitored and collected during production. Using these elements, 

the basic KPIs can be derived. In the proposed framework, the supporting elements can be divided into two 

categories: time and quantity. Some examples of supporting elements and their categorization are presented 

below in Figure 2. 

 

Figure 2: KPIs examples 
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4. Validation Process 

The adoption of digital twin technologies in the agri-food sector marks a pivotal evolution toward integrated, data-

driven operations. Yet, the true measure of their impact lies not in conceptual promise, but in demonstrable, real-

world performance. This is where rigorous validation becomes indispensable. Validation serves as the critical bridge 

between model design and operational reliability, ensuring that each digital twin accurately mirrors its 

corresponding physical system and aligns with the practical requirements of end users. In complex and regulation-

sensitive domains such as fruit and meat production, validation is not merely a technical step—it is a foundation 

for trust, traceability, efficiency, and compliance. Furthermore, it enables improvements with the iterative system, 

fosters user confidence, and enhances decision-making processes based on real-time, reliable insights. This chapter 

presents the validation framework employed across three distinct use cases, offering grounded lessons from field 

implementation and pinpointing key opportunities for refinement and future scalability. 

4.1. Validation of process and logistics optimization 

 As outlined in Chapter 2.1.1, the process and logistics optimization use case is centered on simulating and 

enhancing production and logistics workflows within two key agri-food sectors: meat and fruit. In the meat sector, 

the digital twin (DT) models the full value chain—from animal feed supply through slaughtering, salting, and 

curing—enabling detailed production forecasting, including workforce requirements, potential losses, and demand 

fulfillment. In the fruit sector, the DT simulates the entire ordering and production pipeline, aiming to improve 

forecast accuracy, increase operational efficiency, and minimize waste. 

The validation approach for both sectors involve comparing the outputs generated by the digital twin with actual 

operational data collected from the two partner companies, DIMITRA and PORTESA. The digital twin mirrors each 

company’s internal value chain, simulating worker movements, shifts, and the dynamics of equipment usage. By 

integrating this operational data with static and variable input parameters—such as equipment characteristics, 

utility costs, and product pricing—the DT calculates a range of performance indicators, including energy production 

and consumption, consumable requirements, costs, and estimated waste. 

The digital twin developed for DIMITRA, illustrated in Figure 3, provides a detailed virtual replica of the 

cooperative’s headquarters, including internal routes followed by employees throughout the production cycle. The 

left column of the figure displays the input parameters—configurable values that reflect the cooperative’s 

operational decisions—while the right column displays the calculated outputs, derived through pre-defined 

formulas based on those inputs. These DT-generated outputs form the basis for the validation process, wherein 

they are systematically compared against real-world data provided by the companies. 

Given the complexity and variability inherent in large-scale agri-food operations, a tolerance threshold was 

introduced: deviations of up to 20% between the digital twin and real-world data are considered acceptable. 
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Additionally, the validation was constrained to measurable outputs for which official records exist, as not all DT-

calculated parameters were available or tracked by the companies.   

 

Figure 3: DIMITRA Digital Twin 

The comparison between the digital twin outputs and the real-world data reveals a deviation of less than 20%, 

confirming that the digital twin delivers results closely aligned with actual operations. This level of accuracy 

demonstrates the reliability of the model in simulating real-life conditions. The specific values used in the 

comparison are presented in Table 1. It is important to note that not all parameters exhibit the same level of 

deviation, which is expected. As previously discussed, the digital twin calculations are based on a set of predefined 

formulas, while real-world operations are often influenced by unpredictable factors and operational variances that 

cannot always be fully captured by the model. Nonetheless, the observed deviations remain within an acceptable 

margin, supporting the validity of the digital twin.  

Table 1: Comparison of values produced by the DT with real data of DIMITRA. 

Parameters Data produced from DT Real Data Error 

    ENERGY.TOTAL_Produced (kWh) 258.481,3 255.000,00 1,3% 

    ENERGY.TOTAL_consumption (kWh) 200.323 165.301,93 21,2% 

    MATERIAL.Assembled_pallets 559 620,00 9,8% 

    MATERIAL.Filled_wooden_boxes 88094 77200,00 14,1% 

    MATERIAL.Box_stickers 88094 77000,00 14,4% 

    MATERIAL.Fruit_stickers 1938111 1700000,00 11,76% 

    WASTE.Quantity 34377,8 34000,00 1,1% 
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In the case of DIMITRA, seven key parameters were analyzed, focusing on energy, consumables (materials), and 

waste. These specific categories were selected because they are both quantifiable and supported by recorded 

operational data, ensuring the reliability of the evaluation and minimizing the influence of external variables. This 

approach allows for a more precise validation of the digital tool’s performance. 

The results demonstrate that the digital twin (DT) provides a high level of accuracy, with most parameters showing 

a percentage error below the 20% threshold. The best-performing metric is the total energy produced, with the 

DT estimating 258,481.3 kWh compared to the actual 255,000 kWh, yielding an impressively low deviation of just 

1.3%. Similarly, the estimation for waste quantity is remarkably accurate, with only a 1.1% deviation (34,377.8 kg 

vs. 34,000 kg). In terms of materials, the DT slightly overestimates across all subcategories, with deviations ranging 

from 9.8% to 14.4%. For example, it predicts 559 assembled pallets compared to the actual 620 (9.8% error), and 

88,094 filled wooden boxes against a real figure of 77,200 (14.1% error). Similar patterns are observed in the 

estimation of box stickers and fruit stickers, which show errors of 14.4% and 11.76%, respectively. 

The most significant deviation occurs in the energy consumption parameter, where the DT estimates 200,323 kWh 

versus the actual 165,301.93 kWh, resulting in a 21.2% error—just above the predefined acceptability threshold. 

However, this discrepancy is still considered reasonable given the current limitations of the digital twin. Notably, 

the model does not yet account for the full spectrum of DIMITRA’s operations, which involve multiple fruit types 

and varieties. The project simulation includes only four fruits, requiring the DT to make generalized assumptions 

for the remainder of the production. These simplifications naturally contribute to a higher margin of error in 

complex, variable-dependent metrics such as energy consumption. 

The same validation approach was applied to the PORTESA case. However, given the larger scale of the company 

and its integration with other entities within the same group—such as Cartesa and Aire Sano—separate digital 

twins were developed to represent each segment of the value chain. Beginning from the start of the process, 

Figure 4 represents the fattening farm calculating the potential by products and the weight statistics of the pigs. 

Since these values have occurred by multiplying the number of pigs with the quantity of products produced, the 

validation on this digital twin can be excluded due to the simplicity of the tool and the factors. The next step is the 

feed mill (Figure 5) which in this case simulates the distance covered by the drivers between the facilities. The 

purpose of this digital tool is to find the optimized route in collaboration with VTT. Even though the model 

produces a route which is supposed to be optimized by decreasing the driven distance and time, it can only be 

validated if it is applied in the reality. Since this hasn’t happened and there are also many external factors which 

affect this route it is to be validated when and if implemented.  
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Figure 4: Digital Twin of the Fattening farm 

 

Figure 5: Digital twin of the Feed Mill 

Moving on to the next station of the process, the facilities of Cartesa as shown in Figure 6, contain many data 

which can be compared with real ones since there are the necessary documents to support them. The validation 

process of the data that occurred from the Cartesa DT is similar with DIMITRA. Data such as energy consumption, 

production Kg and Waste can be backed and verified with dedicated documents.   This consistency enhances the 

relevance of the comparison, as it allows for an assessment not only of the digital twin’s accuracy but also of how 

data volume and company size may influence the tool’s performance. The parameters evaluated for the PORTESA, 

Cartesa, and Aire Sano digital twins are summarized in Table 2.  
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Figure 6: Digital Twin of the Facilities of CARTESA 

Similarly to the DIMITRA use case, the Digital Twin developed for CARTESA demonstrates a high level of accuracy, 

with most of the evaluated parameters falling below the 20% error threshold. This confirms the tool’s potential as 

a reliable decision-support system, especially in terms of operational planning and energy management. 

Notably, the energy-related parameters show particularly strong performance. The total energy consumption—

calculated as the sum of burner and boiler gas consumption—closely aligns with the real data. The burner gas 

consumption exhibits an exceptionally low deviation of just 0.17% (405.29 vs. 406 units), while the boiler gas 

consumption shows a modest error of 6.2% (1,857 vs. 1,748 units), indicating that the digital twin effectively 

replicates the plant's energy use with minimal deviation. Regarding production and planning, the results remain 

within an acceptable range, though they show slightly higher variance. The total energy consumption for the 

duration the digital twin represents is 801.7 kWh while the real energy consumption is 893 kWh. This difference 

shows a 10.2% difference which is within that acceptable range. The number of pigs processed (planning) is 

estimated at 1,024 compared to the actual 899, resulting in a 13.9% deviation. Similarly, the total production in 

kilograms is predicted at 87,531 kg versus a real value of 103,800 kg, corresponding to a 15.7% error. These figures, 

while not as precise as the energy metrics, are still within acceptable margins and reflect the digital twin's capability 

to model production processes effectively.  

The only parameter that exceeds the 20% error threshold is the distributed kilograms of product, which shows a 

deviation of 22.4% (38,158 kg estimated vs. 49,173 kg actual). This discrepancy may be attributed to limitations in 

the available data regarding post-processing logistics and distribution schedules, which are often subject to 

greater variability and external influences not fully captured in the digital twin's current configuration. Overall, 

the CARTESA and DIMITRA digital twin proves to be a robust and reliable tool for simulating energy usage and 
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supporting operational planning. With minor refinement, especially in the modelling of distribution processes, it 

has the potential to further enhance decision-making accuracy and efficiency across the production chain. 

Table 2: Comparison of values produced by the DT with real data of PORTESA, CARTESA and Aire Sano 

Parameters Data produced from DT Real Data Error 

ENERGY.Energy_consumption_TOTAL 801.7 893 10.2% 

ENERGY.Burner_gas_consumption 405.29 406 0.17% 

ENERGY.Boiler_gas_consumption 1857 1748 6.2% 

PLANNING.Total_pigs 1024 899 13.9% 

PROD.Total_kg 87531 103800 15.7% 

PROD.Distributed_kg 38158 49173 22.4% 

4.2. Validation of traceability and transparency by blockchain 

The traceability platform developed by Stelviotech has proven to be a highly effective tool, integrating all critical 

information related to the end products across the agri-food value chain. It offers both companies—DIMITRA and 

PORTESA—the capability to monitor their production processes from origin to end consumer, whether that origin 

is the farm or the field. Each stage is meticulously documented, while the system also provides producers with full 

control over which information is shared externally. As illustrated in Figure 7 and Figure 8 for DIMITRA, the platform 

outlines each workflow step-by-step, not only aligning with the companies' existing processes but also enhancing 

them through improved structure and visibility. The level of workflow detail depends on the initial input provided 

during the setup of each product type. During testing with products from both companies, the platform successfully 

tracked every step of the production chain, offering fast and comprehensive access to relevant information. 
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Figure 7: Workflows of the different products 

Nonetheless, while the platform is capable of storing extensive details on processes and certifications, it does 

require users to be familiar with computer systems and to dedicate time to inputting data for each product and 

process. 

 

Figure 8: Detailed workflow of a product with the contained data 
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Among the two cases, the platform proved particularly valuable for PORTESA, Cartesa, and Aire Sano. In this 

context, traceability was exceptionally precise, as each pig was assigned a unique identification code, allowing end 

products to be traced directly back to the individual animal. In contrast, the fruit sector presents inherent 

limitations: traceability can only reach the level of the field, not the specific tree. Although this was an expected 

constraint, it prevents the traceability system from achieving full granularity. Importantly, this limitation arises from 

the nature of the product itself, not from any deficiency in the platform’s capabilities. 

4.3. Validation of biomass processing  

In the biomass processing use case, neither of the two companies has yet implemented the proposed methods in 

practice. The existing infrastructure currently lacks the capacity to support such methods, meaning that the results 

related to biomass remain at an experimental stage and are primarily based on the collaborative work conducted 

with CVR. 

For the PORTESA case within the BBTWINS project, a Digital Twin was developed to simulate the operation of a 

biogas production facility that processes pig waste. While the model is designed to replicate a realistic biomass 

processing setup, it is important to note that no such biogas facility currently exists on-site at PORTESA. This 

absence of an operational benchmark limits the possibilities for traditional validation using in-situ measurements. 

Consequently, the only viable approach for evaluating the Digital Twin’s performance is through comparison with 

experimental data provided by CVR, along with feasibility estimations presented in the BBTWINS deliverable D6.4. 

 

Figure 9: Digital Twin of the Biogas Plan 

This study presents a focused comparative analysis between the outputs of the simulation model and the feasibility 

findings of the project, specifically concerning the anaerobic digestion of pig manure. The objective is to assess the 

Digital Twin’s predictive capabilities in estimating key processing outcomes such as biogas yield, organic matter 

conversion, and energy output. By comparing the model’s simulated results with the techno-economic parameters 

and performance indicators documented in D6.4, this analysis serves as an initial validation step and offers insight 
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into the potential accuracy and viability of the proposed biomass processing solution. According to the simulation 

model, processing 1,000,000 tons of pig manure yields approximately 6.98 million m³ of biogas, with a 

corresponding methane production of 3.10 million m³ across all pig-related inputs. This closely aligns with BBTWINS 

estimates, which project a total annual yield of 19.7 million m³ of biogas from pig manure, wastewater sludge, and 

leguminous residues at regional scale. Given that the simulation likely models a single-facility scenario, the biogas 

yield per ton of manure is consistent with that found in the deliverable, validating the scalability of the modelled 

approach. 

In terms of organic content, the model reports 123,190 tons of organic matter and 172,000 tons of total solids in 

pig manure. These values support the substrate quality assumptions in BBTWINS, which identify pig manure as a 

high-value feedstock for anaerobic digestion due to its rich organic load and favorable bioconversion 

characteristics. 

Energy-wise, the simulation estimates a biomethane energy output of 1.69 million KJ post-purification and 45.06 

million kWh of electricity from cogeneration. These results are in line with the deliverable’s economic evaluation, 

which confirmed the financial viability of biogas plants, reporting a Net Present Value of €24 million, an IRR >15%, 

and a payback period of just 1.2 years. 

This comparison affirms the technical consistency between digital simulation models and feasibility studies, 

demonstrating that pig manure offers a reliable substrate for biogas production both in theoretical and practical 

applications. The coherence of the results strengthens the case for scaling up digital twin models in real-world 

biomass processing and supports further investment in manure-to-energy conversion systems. 

In parallel to the biogas feasibility studies, CVR conducted a series of combustion experiments using pruning 

residues, with a particular focus on peach tree biomass. These tests aimed to assess the potential of this 

underutilized resource as a solid biofuel, through its densification into briquettes and subsequent combustion 

performance. Pruning residues, despite their abundance in Mediterranean agricultural systems, remain largely 

untapped due to logistic, economic, and technological barriers. CVR’s trials sought to overcome some of these 

limitations by producing 20 kg of briquettes from residual peach pruning using a pilot-scale RUF-4 briquetting 

system. The briquettes were subjected to a suite of analyses, including proximate and ultimate composition, 

heating values, and physical characterization. 

The combustion trials were carried out using a 25-kW downdraft wood gasification boiler under controlled 

operating conditions. Results indicated that peach pruning briquettes performed satisfactorily in terms of 

combustion behavior. The flue gas temperature reached up to 534 K, and emissions of CO were notably low (285 

mg/m³ @ 6% O₂), significantly outperforming pine wood briquettes which exhibited much higher CO levels. This 

suggests a more complete combustion of peach biomass under similar conditions. However, the nitrogen content 

of the peach pruning, likely due to the presence of bark, leaves, and fertilized tissues, led to a higher NOx emission 

(433 mg/m³ @ 6% O₂), compared to pine briquettes (169 mg/m³). Nonetheless, particulate matter emissions and 

TOC remained within acceptable limits and similar across both fuels. 
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These findings confirm that pruning waste, particularly from peach orchards, can be effectively valorized as a solid 

biofuel through briquetting and combustion. Despite some challenges related to fuel stabilization and combustion 

controls, such as oxygen fluctuation and fuel loading, these residues present an environmentally and economically 

viable alternative to conventional woody biomass. This supports the BBTWINS objective of promoting circular 

economy models by leveraging overlooked biomass streams and demonstrates the technical feasibility of 

decentralized, small-scale combustion systems for agricultural waste recovery. 

 

 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 25 

 

 

5. Measurement for Operational 
success 
 

The digital tools developed within the scope of the BBTWINS project represent a significant step forward for 

companies aiming to modernize, optimize, and future-proof their value chains. These tools, ranging from advanced 

simulation models to traceability platforms, offer powerful support mechanisms for both operational supervision 

and strategic decision-making. In an increasingly data-driven and competitive agri-food industry, digital 

technologies are no longer optional—they have become essential instruments for improving productivity, ensuring 

compliance, and fostering sustainable growth. 

However, the full potential of digital tools can only be unlocked when they are systematically validated and 

embedded within a framework that supports performance monitoring and continuous improvement. As discussed 

in Chapter 4, validation is the foundation for trust in the digital tools’ outputs, ensuring that they accurately reflect 

real-world systems and are capable of guiding decisions with confidence. Building upon validation, the next crucial 

step in leveraging digital transformation is the definition and implementation of Key Performance Indicators (KPIs). 

KPIs serve as quantifiable metrics that allow companies to set targets, monitor progress, and evaluate success. They 

enable management teams to identify inefficiencies, prioritize interventions, and track improvements over time. 

Without such benchmarks, even the most sophisticated digital solutions may fall short of delivering tangible 

business value (Collins et al., 2016). 

In the context of the BBTWINS project, KPIs were designed not only to measure general operational efficiency but 

also to provide tailored insights for the specific use cases developed: process and logistics optimization in the fruit 

and meat sectors, and biomass valorization through digital twins. These indicators help bridge the gap between 

simulation and reality, enabling a feedback loop in which real-world performance refines digital models, and 

improved models support more accurate forecasting and optimization. 

The process and logistics optimization use case, for example, simulates end-to-end operations in both animal food 

production and fruit supply chains. In the meat sector, the digital twin captures the full production cycle—from 

feed mill operations, animal farming, slaughtering, and processing—to forecast labor requirements, predict losses, 

and align production with market demand. Similarly, in the fruit sector, the DT models every phase of the ordering 

and distribution process, allowing producers to plan more accurately, reduce overproduction, and minimize waste. 

When integrated with KPI frameworks, these simulations become dynamic decision-support tools, continuously 

guiding operational improvements based on measurable goals. Table 3 below outlines a selection of KPIs identified 

as relevant across all use cases developed under the project. The presented KPIs are greater described in the Annex, 

it includes all the formulas for each KPI along with a more detailed description and information for the relevant 

parameters or supporting elements as mentioned on chapter 3. These indicators support multi-level evaluation—
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from machine-level performance to supply chain traceability—and can be tailored to specific production 

environments: 

Table 3: List of KPIs for operational success measurement 

KPIs Name Description 
1 Availability  The percentage of actual time a machine is available 

2 Production The efficiency of production vs. malfunction-caused interruptions 

3 Worker efficiency The efficiency of a worker’s attendance in production 

4 Effectiveness 
How effective a machine can be during the production time, measured by 
the ratio of planned target cycle time  to actual cycle time 

5 Importing time The time duration for the importing procedure 

6 Exporting time The time duration for the exporting procedure 

7 Travel time The travel time required from point A to point B 

8 Traceability Coverage  The detail of the traceable steps 

9 Update Frequency The frequency real time data are recorded and uploaded to the database 

10 Time to Trace request  How long it takes to trace a specific step of the process 

11 Waste ratio The percentage of bad to good products 

12 First time quality The percentage of good quality parts going through the manufacturing 
process in the first time 

13 Energy consumption The amount of energy required for the operation to run 

Looking ahead, the KPIs presented in Table 3 serve as more than just operational metrics; they form the backbone 

of a data governance strategy that supports scalability, innovation, and long-term impact. By continuously aligning 

digital twin outputs with these indicators, companies can not only track deviations and inefficiencies but also 

anticipate future challenges, simulate alternative scenarios, and make proactive adjustments to their production 

systems. Furthermore, when KPIs are integrated into digital dashboards and visualized in real-time, they become 

powerful tools for cross-functional coordination—enabling operations managers, quality controllers, sustainability 

officers, and logistics teams to work from a shared set of insights. This convergence of roles and data fosters a 

culture of transparency and accountability, which is critical in sectors like agri-food, where traceability and 

compliance are closely investigated. The use cases explored within BBTWINS show that while digitalization requires 

upfront investments in infrastructure, validation, and user training, it yields significant returns when paired with 

well-defined performance targets. It also encourages a shift in mindset—from reactive management to predictive 

and adaptive planning. As the digital transition progresses, future iterations of the project could explore more 

advanced forms of performance measurement, such as AI-driven anomaly detection, real-time feedback loops, and 

predictive maintenance scheduling.  
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6. Result Analysis 

The implementation and validation of digital tools within the BBTWINS project yielded promising and tangible 

outcomes across the three use cases: Process and Logistics Optimization, Traceability and Transparency, and 

Biomass Processing. These results not only confirm the feasibility of Digital Twins (DTs) and traceability platforms 

in real-world agri-food environments but also demonstrate their capacity to support data-driven decision-making, 

operational efficiency, and value chain sustainability. 

The digital twins developed for DIMITRA and the PORTESA-CARTESA-Aire Sano ecosystem successfully simulated 

complex production and logistics workflows, achieving a high level of fidelity when compared to actual operational 

data. For DIMITRA, the DT model captured key elements of internal operations including worker movement, energy 

flows, materials usage, and waste generation. Among the seven parameters validated, six exhibited deviations 

under the acceptable 20% threshold, with energy production and waste output showing deviations as low as 1.3% 

and 1.1% respectively. Although the energy consumption value deviated by 21.2%, this was attributed to the 

model’s current limitations in simulating the full breadth of fruit varieties and their respective processing needs. 

These findings confirm that the DT effectively represents DIMITRA’s internal environment and can be reliably used 

for forecasting, resource planning, and production optimization. Similarly, the PORTESA use case—due to its 

vertically integrated structure, which required multiple digital twin models across the value chain, including 

fattening farms, feed mills, meat processing facilities, and distribution stages. The CARTESA DT, which focused on 

energy and production metrics, showed strong alignment with real-world values. Burner and boiler gas 

consumption had minimal deviations (0.17% and 6.2% respectively), and the number of pigs processed (13.9% 

error) and total product weight (15.7% error) were also well within the defined tolerance. The only parameter 

exceeding the threshold was distributed product weight, with a 22.4% deviation. This was largely attributed to 

dynamic and non-linear factors in the logistics chain that are difficult to simulate with current inputs, such as 

fluctuating demand, third-party scheduling, and transport variability. 

Beyond production modelling, the traceability and transparency platform—powered by blockchain and developed 

by Stelviotech—demonstrated strong functionality and real-time reliability. For PORTESA and its affiliated entities, 

the platform enabled precise traceability from the individual animal to the final meat product. This level of 

granularity significantly enhances regulatory compliance, consumer trust, and internal quality assurance processes. 

By contrast, in the DIMITRA case, traceability was inherently limited to the field level due to the characteristics of 

orchard-based agriculture. Despite this sectoral constraint, the platform successfully mapped operational 

workflows and allowed dynamic data access for producers, clients, and consumers. Both organizations emphasized 

the platform’s value in streamlining information flows and improving transparency, though they also noted the 

importance of addressing barriers related to staff training and time allocation for data entry. 

The use case on biomass processing remains in a pre-implementation phase but has laid valuable groundwork for 

future circular economy initiatives. PORTESA’s digital twin simulating a biogas plant based on pig waste was 
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validated using experimental data from CVR, as no physical facility currently exists. The simulation suggested that 

the integration of biogas as an energy source could be technically viable and economically beneficial, especially 

when paired with complementary renewable sources such as photovoltaics. In DIMITRA, the biomass simulation 

explored the valorization of fruit waste into functional compounds, including polyphenols, pectin, and dietary fiber. 

While infrastructure for such processes is not yet in place, the DT outputs provided insight into the potential for 

developing nutraceutical and bio-based product lines from currently underutilized side streams. 

Overall, the validation activities across the three use cases produced four key observations. First, the digital twins 

demonstrated consistent and reliable performance, with most parameters falling within a 20% deviation from real-

world data. This confirms their robustness for simulating operational environments and generating performance 

forecasts. Second, the tools proved scalable and adaptable to different enterprise sizes and organizational 

structures—from the cooperative model of DIMITRA to the vertically integrated system of PORTESA. Third, when 

linked to a clear KPI framework, the tools provided not just simulations, but also actionable insights for production 

efficiency, energy optimization, and waste minimization. Finally, the project revealed important sector-specific 

challenges: in particular, the limitation of traceability in orchard-based agriculture and the need for more granular 

logistics data in meat distribution scenarios. These findings underscore that while digital tools offer high potential, 

their effectiveness depends on the ecosystem in which they are deployed. Factors such as digital readiness, data 

availability, infrastructure maturity, and user training all play critical roles in shaping outcomes. In both pilot cases, 

the initial investment in modelling and validation has already yielded operational insights, laying the foundation for 

broader digital adoption. The implementation of KPIs further supports this transition, enabling ongoing 

performance monitoring and continuous improvement strategies. 
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7. Optimization  

The integration of digital technologies has become indispensable for the effective organization and strategic 

management of modern companies. As demonstrated in the previous chapter, the digital tools developed within 

the BBTWINS project—particularly the Digital Twin platforms—have been validated to deliver results that closely 

mirror real-world operations. This high degree of accuracy confirms that these tools are not merely useful for 

operational oversight, traceability, or waste monitoring, but can be extended to support advanced optimization 

and decision-making scenarios. 

Rather than relying solely on conventional data analysis or static management routines, companies now have the 

opportunity to simulate proposed changes within a risk-free digital environment. Through the application of Digital 

Twins, businesses can evaluate how even minor adjustments in their value chains may impact overall 

performance—both operationally and financially. These simulated interventions can range from simple changes, 

such as reallocating tasks or hiring an additional employee, to more substantial strategic decisions like investing in 

infrastructure upgrades or expanding into new markets. By forecasting outcomes in a virtual setting, companies 

significantly reduce risk and gain a deeper understanding of the consequences associated with various decisions. 

This foresight enables data-driven planning and improves the precision of managerial actions. 

In the context of the BBTWINS project, this optimization capability was practically demonstrated in collaboration 

with DIMITRA. Although the changes tested were modest in scale, the impact proved to be meaningful. Through 

structured consultations with DIMITRA’s personnel, several operational bottlenecks were identified—specific 

points in the workflow that hindered efficiency or slowed throughput. The Digital Twin platform was then used to 

simulate various interventions aimed at improving these weak links. 
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Figure 10: Comparison of the default and test case presenting the effect of hiring two employees 

One of the initial scenarios tested involved accelerating the pace of selected internal procedures. Unsurprisingly, 

the simulation revealed a significant improvement in productivity, as faster operations naturally allowed a greater 

volume of goods to be processed within a given time frame. However, this result also exposed a critical limitation: 

the pace of human labor is not uniform and can fluctuate due to numerous factors such as fatigue, motivation, or 

external disruptions. Recognizing this variability, the team explored a more stable and scalable solution—

strategically hiring two additional employees to support specific operational areas. The simulated outcome of this 

intervention, illustrated in Figure 10, showed notable gains in throughput and overall performance, reinforcing the 

value of Digital Twins as a tool for evaluating personnel strategies and optimizing resource allocation. 

Among all the parameters evaluated through the Digital Twin simulation, five stood out for their significant impact 

and are summarized in Table 4. Notably, hiring two additional employees led to a 1.38% reduction in personnel 

costs. Although counterintuitive at first glance, this decrease is attributed to faster task completion, which in turn 

results in lower overall energy consumption and more efficient shift utilization. For instance, energy usage in the 

palletizer unit dropped by 33.34%, while energy consumed in the waiting chamber decreased by 24%. Time 

efficiency also improved considerably. The unloading and weighing process duration was reduced by 10.5%, and 

the palletizing time saw a substantial decline of 33.34%. These improvements translate into a leaner, more 

productive workflow, where more work can be completed within the same time frame. As a result, operational 

margins increase, and the return on investment for the additional hires becomes not only justified but strategically 

advantageous. However, it is important to keep in mind that these figures are the results of adjusting just two 

parameters, any other changes along with the hires will lead to different results. So, it is important to double check 

and test all the affected parameters before implementing any of these changes. 

 

 



BBTWINS PROJECT Nº 101023334 

 

 

D6.2 Use case Implementation analysis 31 

 

 

Table 4: Mostly affected results from the optimization method for the case of DIMITRA 

Simulation.ObjectType Default Test Column1 

    COSTS.Personnel 3742,453997 3690,722169 1,38% 

    ENERGY.Paletizer 58,25 38,83333333 33,34% 

    ENERGY.Waiting_chamber 13 9,88 24% 

    TIMES.Unloading_Weighing(d) 0,84155197 0,75319384 10,5% 

    TIMES.Palletiser 0,970833333 0,647222222 33,34% 

 

Ultimately, this example highlights how Digital Twin technologies empower companies to pre-test potential 

improvements in a controlled, data-rich environment before committing real-world resources. By bridging the gap 

between intention and implementation, these tools not only enhance operational agility but also support long-term 

strategic planning grounded in evidence rather than intuition. 
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8. Conclusions 

The implementation and validation of the digital tools developed under the BBTWINS project have demonstrated 

that Digital Twins and blockchain-based traceability platforms can serve as powerful enablers of transformation 

within the agri-food sector. Through detailed modelling, real-world testing, and performance evaluation using 

clearly defined KPIs, the project has confirmed the feasibility and utility of these technologies across two distinct 

and representative value chains—fresh fruit (DIMITRA) and pork production (PORTESA, CARTESA, AIRE SANO). 

The digital twins exhibited high accuracy in replicating operational processes, with most simulation outputs 

deviating less than 20% from actual measured data. This confirms the DTs’ suitability as tools for production 

forecasting, energy efficiency monitoring, logistics planning, and resource allocation. Even in more complex or 

variable parameters, such as energy consumption or product distribution, the deviations were explainable and 

within a reasonable margin, highlighting the robustness of the modelling approach. 

The traceability system further enhanced operational transparency and control. In the meat sector, full traceability 

from animal to end product was achieved, providing a competitive advantage in terms of regulatory compliance 

and consumer trust. While traceability in the fruit sector faced structural limitations, the system still improved 

internal logistics and data access, supporting better-informed decisions. 

Although the biomass processing component remains at an early stage of development, it represents a critical step 

toward the adoption of circular economy practices. The simulations have revealed viable pathways for valorizing 

agri-food residues, offering insight into the design of future infrastructure and business models. 

Importantly, the project has shown that digitalization cannot succeed in isolation. Beyond technical validation, 

successful implementation requires investment in user training, digital literacy, data integration, and change 

management. Organizational readiness and cross-functional collaboration are essential for ensuring that these 

tools are embedded effectively and deliver long-term impact. 

In conclusion, BBTWINS provides a replicable, scalable framework for integrating digital innovation into bio-based 

value chains. The tools developed have proven their reliability, adaptability, and relevance, and they have the 

potential to reshape operational practices, enhance sustainability, and foster resilience in Europe’s agri-food sector. 

As the project progresses, efforts should now focus on maximizing the tools’ adoption, refining user interfaces, and 

expanding the use cases to include new sectors and geographies. With continued collaboration among technology 

developers, producers, researchers, and policy stakeholders, BBTWINS can serve as a blueprint for the digital 

transformation of the European bioeconomy. 
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Annex 

Table 1.  

KPI name Availability  

Type Production 

Function 𝛢 =
𝐴𝑃𝑇

𝑃𝐵𝑇
∗ 100% 

Target and description 

The percentage of actual time a machine is available. It represents the portion 

of time used for processing compared to the total time that includes AUST, 

delay time and down time. 

Data necessary to calculate 

the KPI 

1. APT = Actual Production Time  

2. PBT= Planned busy time 

Table 2.  

KPI name Technical efficiency 

Type Production 

Function 
𝑇𝐸 =

𝐴𝑃𝑇

𝐴𝑃𝑇 + 𝐴𝐷𝑂𝑇
∗ 100% 

Target and description The efficiency of production vs. malfunction-caused interruptions. It represents 

the relationship between APT and the sum of APT and ADOT that includes 

times of malfunction-caused interruptions. 

Data necessary to calculate 

the KPI 

1. APT = Actual Production Time  

2. ADOT = Actual unit down time 
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Table 3.  

KPI name Worker efficiency 

Type Production 

Function 
𝑊𝐸 =

𝐴𝑃𝑊𝑇

𝐴𝑃𝐴𝑇
∗ 100% 

Target and description The efficiency of a worker’s attendance in production, measured by the 

relationship between the actual personnel’s work time (APWT) related to 

production orders and the actual personnel’s attendance time (APAT). 

Data necessary to calculate 

the KPI 

1. APWT = Actual Personnel Work Time  

2. APAT = Actual Personnel attendance time 

Table 4.  

KPI name Effectiveness 

Type Production 

Function 
𝐸 =

𝑃𝑅𝐼

𝐴𝑃𝑇
𝑃𝑄

∗ 100% =
𝑃𝑅𝐼 ∗ 𝑃𝑄

𝐴𝑃𝑇
∗ 100% 

Target and description How effective a machine can be during the production time, measured by the 

ratio of planned target cycle time (represented as planned runtime per item 

(PRI)) to actual cycle time (expressed as APT divided by produced quantity 

(PQ)). 

Data necessary to calculate 

the KPI 

1. PRI = Actual Personnel Work Time  

2. APT = Actual Personnel attendance time 

3. PQ= Produced Quantity 
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Table 5.  

KPI name Importing time 

Type Production 

Function 
𝐼𝑚𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐾𝑔)𝑝𝑒𝑟 𝑟𝑒𝑐𝑒𝑖𝑝𝑡

𝑘𝑔
ℎ𝑟

 𝑤𝑒 𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
 

Target and description The time efficiency optimization of the importing procedure.  

Data necessary to calculate 

the KPI 

1. Kg of products per receipt 

2. How many Kg of fruits we can handle per hour 

Table 6.  

KPI name Exporting time 

Type Production 

Function 
𝐸𝑥𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐾𝑔) 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟

𝑘𝑔
ℎ𝑟

 𝑤𝑒 𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
 

Target and description The time efficiency optimization of the exporting procedure. 

Data necessary to calculate 

the KPI 

1. Kg of products per order 

2. How many Kg of fruits we can handle per hour 

Table 7.  

KPI name Importing time 

Type Production 

Function 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐾𝑔) 𝑝𝑒𝑟 𝑣𝑎𝑟𝑖𝑒𝑡𝑦

𝑘𝑔
ℎ𝑟

 𝑤𝑒 𝑐𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
 

Target and description Aiming to optimize the procedure in order to reduce time duration 

Data necessary to calculate 

the KPI 

1. Kg of products per variety 

2. How many Kg of fruits we can handle per hour 
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Table 8.  

KPI name Time from point A to point B 

Type Logistics 

Target and description To evaluate the time to transfer the products between two points 

Data necessary to calculate the KPI the actual times (min) for the truck to move directly between two 
points 

Table 9.  

KPI name Traceability Coverage  

Type Logistics 

Target and description The level of traceability. How many steps of the process can be traced 

back to initial form of the product 

Data necessary to calculate the KPI  

Table 10.  

KPI name Update Frequency 

Type Logistics 

Target and description The frequency real time data are recorded and uploaded to the 

database 

Data necessary to calculate the KPI  

Table 11.  

KPI name Time to Trace request  

Type Logistics 

Target and description How long it takes to trace a specific step of the process. 

Data necessary to calculate the KPI  
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Table 12.  

KPI name Actual to planned scrap ratio (SQR) 

Type Quality 

Function 
𝑆𝑄𝑅 =

𝑆𝑄

𝑃𝑆𝑄
∗ 100% 

Target and description The relationship of the actual SQ and the PSQ, indicating how much scrap is 

produced compared with the expected value. Clearly a lower value of SQR is 

preferred since it implies less scrap than expected. However, a constant low 

SQR value may indicate that the PSQ is too high, which may result in inefficient 

resource allocation. 

Data necessary to calculate 

the KPI 

1. SQ = Scrap Quantity 

2. PSQ = Planned Scrap Quantity 

Table 13.  

KPI name Scrap ratio (SR) 

Type Quality 

Function 
𝑆𝑅 =

𝑆𝑄

𝑃𝑄
∗ 100% 

Target and description The relationship between the SQ and PQ. 

Data necessary to calculate 

the KPI 

1. SQ = Scrap Quantity 

2. PQ= Produced Quantity 

Table 14.  

KPI name Rework ratio (RR) 

Type Quality 

Function 
𝑅𝑅 =

𝑅𝑄

𝑃𝑄
∗ 100% 

Target and description The percentage of RQ among PQ. 

Data necessary to calculate 

the KPI 

1. RQ = Rework Quantity 

2. PQ= Produced Quantity 
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Table 15.  

KPI name First time quality (FTQ) 

Type Quality 

Function 
𝐹𝑇𝑄 =

𝐺𝑄

𝑃𝑄𝐹
∗ 100% 

Target and description The percentage of good quality parts going through the manufacturing process 

in the first time. 

Data necessary to calculate 

the KPI 

1. GQ = Good Quantity 

2. PQF= Produced first process quantity 

Table 16.  

KPI name Quality buy rate (QBR) 

Type Quality 

Function 
𝑄𝐵𝑅 =

𝐺𝑄 + 𝑅𝑄

𝑃𝑄
∗ 100% 

Target and description The overall percentage of good quality parts after reworks. 

Data necessary to calculate 

the KPI 

1. GQ = Good Quantity 

2. PQ = Produced Quantity 

3. RQ = Rework quantity  

Table 17.  

KPI name Energy consumption 

Type Costs 

Function  

Target and description to calculate the energy consumption of the main units/subunits of the 
production line 

Data necessary to calculate 

the KPI 

The actual measured kWh of the production line units  
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